Evolution of patterns on Conus shells.

نویسندگان

  • Zhenqiang Gong
  • Nichilos J Matzke
  • Bard Ermentrout
  • Dawn Song
  • Jann E Vendetti
  • Montgomery Slatkin
  • George Oster
چکیده

The pigmentation patterns of shells in the genus Conus can be generated by a neural-network model of the mantle. We fit model parameters to the shell pigmentation patterns of 19 living Conus species for which a well resolved phylogeny is available. We infer the evolutionary history of these parameters and use these results to infer the pigmentation patterns of ancestral species. The methods we use allow us to characterize the evolutionary history of a neural network, an organ that cannot be preserved in the fossil record. These results are also notable because the inferred patterns of ancestral species sometimes lie outside the range of patterns of their living descendants, and illustrate how development imposes constraints on the evolution of complex phenotypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glowing Seashells: Diversity of Fossilized Coloration Patterns on Coral Reef-Associated Cone Snail (Gastropoda: Conidae) Shells from the Neogene of the Dominican Republic

The biology of modern Conidae (cone snails)--which includes the hyperdiverse genus Conus--has been intensively studied, but the fossil record of the clade remains poorly understood, particularly within an evolutionary framework. Here, ultraviolet light is used to reveal and characterize the original shell coloration patterns of 28 species of cone snails from three Neogene coral reef-associated ...

متن کامل

A Biological Determination of the Taxonomic Status of Conus elisae Kiener in Hawaii!

A population of Conus pennaceus Born was examined at Hauula, Oahu, and was found to include darkly pigmented specimens referable to C. elisae Kiener. The larvae from an egg mass laid by one of the darkly pigmented cones were reared in the laboratory. Of seven surviving larvae, six developed the C. pennaceus color pattern, while one developed the. C. elisae pattern. It was concluded that Hawaiia...

متن کامل

Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails.

Venoms of predatory marine gastropods of the genus Conus show amazing levels of interspecific diversity and are comprised of a cocktail of peptide neurotoxins, termed conotoxins, that are encoded by large gene families. Conotoxin gene family evolution is characterized by gene duplications and high rates of nonsynonymous substitution among paralogues; yet, what controls the differentiation of ve...

متن کامل

Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes

Genes that encode products with exogenous targets, which comprise an organism's "exogenome," typically exhibit high rates of evolution. The genes encoding the venom peptides (conotoxins or conopeptides) in Conus sensu lato exemplify this class of genes. Their rapid diversification has been established and is believed to be linked to the high speciation rate in this genus. However, the molecular...

متن کامل

Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails.

In order to investigate the evolution of conotoxin multigene families among two closely related vermivorous CONUS: species, we sequenced 104 four-loop conotoxin mRNAs from two individuals of CONUS: ebraeus and compared these with sequences already obtained from CONUS: abbreviatus. In contrast to the diversity of conotoxin sequences obtained from C. abbreviatus, only two common sequence variants...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 5  شماره 

صفحات  -

تاریخ انتشار 2012